A Meshless Local Petrov-Galerkin Shepard and Least-Squares Method Based on Duo Nodal Supports
نویسندگان
چکیده
منابع مشابه
A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation
In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...
متن کاملMeshless Local Petrov-Galerkin (MLPG) Method for Convection-Diffusion Problems
Due to the very general nature of the Meshless Local Petrov-Galerkin (MLPG) method, it is very easy and natural to introduce the upwinding concept (even in multidimensional cases) in the MLPG method, in order to deal with convection-dominated flows. In this paper, several upwinding schemes are proposed, and applied to solve steady convectiondiffusion problems, in one and two dimensions. Even fo...
متن کاملAnalysis of thin beams, using the meshless local Petrov±Galerkin method, with generalized moving least squares interpolations
In this paper, the conventional moving least squares interpolation scheme is generalized, to incorporate the information concerning the derivative of the ®eld variable into the interpolation scheme. By using this generalized moving least squares interpolation, along with the MLPG (Meshless Local Petrov±Galerkin) paradigm, a new numerical approach is proposed to deal with 4th order problems of t...
متن کاملImposing boundary conditions in the meshless local Petrov–Galerkin method
A particular meshless method, named meshless local Petrov–Galerkin is investigated. To treat the essential boundary condition problem, an alternative approach is proposed. The basic idea is to merge the best features of two different methods of shape function generation: the moving least squares (MLS) and the radial basis functions with polynomial terms (RBFp). Whereas the MLS has lower computa...
متن کاملMeshless Local Petrov-Galerkin Method in Anisotropic Elasticity
A meshless method based on the local Petrov-Galerkin approach is proposed for solution of static and elastodynamic problems in a homogeneous anisotropic medium. The Heaviside step function is used as the test functions in the local weak form. It is leading to derive local boundary integral equations (LBIEs). For transient elastodynamic problems the Laplace transfor technique is applied and the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2014
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2014/806142